378 lines
12 KiB
C++
378 lines
12 KiB
C++
|
#pragma GCC optimize("Ofast")
|
||
|
/////////////////////////////////////////////////////////
|
||
|
/**
|
||
|
* Useful Macros
|
||
|
* by subcrip
|
||
|
* (requires C++17)
|
||
|
*/
|
||
|
|
||
|
#include<bits/stdc++.h>
|
||
|
using namespace std;
|
||
|
|
||
|
/* macro helpers */
|
||
|
#define __NARGS(...) std::tuple_size<decltype(std::make_tuple(__VA_ARGS__))>::value
|
||
|
#define __DECOMPOSE_S(a, x) auto x = a;
|
||
|
#define __DECOMPOSE_N(a, ...) auto [__VA_ARGS__] = a;
|
||
|
constexpr void __() {}
|
||
|
#define __AS_PROCEDURE(...) __(); __VA_ARGS__; __()
|
||
|
#define __as_typeof(container) decltype(container)::value_type
|
||
|
|
||
|
/* type aliases */
|
||
|
using ll = int64_t;
|
||
|
using ull = uint64_t;
|
||
|
using pii = pair<int, int>;
|
||
|
using pil = pair<int, ll>;
|
||
|
using pli = pair<ll, int>;
|
||
|
using pll = pair<ll, ll>;
|
||
|
|
||
|
/* constants */
|
||
|
constexpr int INF = 0x3f3f3f3f;
|
||
|
constexpr ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
|
||
|
constexpr ll MDL = 1e9 + 7;
|
||
|
constexpr ll PRIME = 998'244'353;
|
||
|
constexpr ll MDL1 = 8784491;
|
||
|
constexpr ll MDL2 = PRIME;
|
||
|
|
||
|
/* random */
|
||
|
|
||
|
mt19937 rd(chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now().time_since_epoch()).count());
|
||
|
|
||
|
/* bit-wise operations */
|
||
|
#define lowbit(x) ((x) & -(x))
|
||
|
#define popcount(x) (__builtin_popcountll(ll(x)))
|
||
|
#define parity(x) (__builtin_parityll(ll(x)))
|
||
|
#define msp(x) (63LL - __builtin_clzll(ll(x)))
|
||
|
#define lsp(x) (__builtin_ctzll(ll(x)))
|
||
|
|
||
|
/* arithmetic operations */
|
||
|
#define mod(x, y) ((((x) % (y)) + (y)) % (y))
|
||
|
|
||
|
/* fast pairs */
|
||
|
#define upair ull
|
||
|
#define umake(x, y) (ull(x) << 32 | (ull(y) & ((1ULL << 32) - 1)))
|
||
|
#define u1(p) ((p) >> 32)
|
||
|
#define u2(p) ((p) & ((1ULL << 32) - 1))
|
||
|
#define ult std::less<upair>
|
||
|
#define ugt std::greater<upair>
|
||
|
|
||
|
#define ipair ull
|
||
|
#define imake(x, y) (umake(x, y))
|
||
|
#define i1(p) (int(u1(ll(p))))
|
||
|
#define i2(p) (ll(u2(p) << 32) >> 32)
|
||
|
struct ilt {
|
||
|
bool operator()(const ipair& a, const ipair& b) const {
|
||
|
if (i1(a) == i1(b)) return i2(a) < i2(b);
|
||
|
else return i1(a) < i1(b);
|
||
|
}
|
||
|
};
|
||
|
struct igt {
|
||
|
bool operator()(const ipair& a, const ipair& b) const {
|
||
|
if (i1(a) == i1(b)) return i2(a) > i2(b);
|
||
|
else return i1(a) > i1(b);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/* conditions */
|
||
|
#define loop while (1)
|
||
|
#define if_or(var, val) if (!(var == val)) var = val; else
|
||
|
#define continue_or(var, val) __AS_PROCEDURE(if (var == val) continue; var = val;)
|
||
|
#define break_or(var, val) __AS_PROCEDURE(if (var == val) break; var = val;)
|
||
|
|
||
|
/* hash */
|
||
|
struct safe_hash {
|
||
|
// https://codeforces.com/blog/entry/62393
|
||
|
static uint64_t splitmix64(uint64_t x) {
|
||
|
// http://xorshift.di.unimi.it/splitmix64.c
|
||
|
x += 0x9e3779b97f4a7c15;
|
||
|
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
|
||
|
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
|
||
|
return x ^ (x >> 31);
|
||
|
}
|
||
|
|
||
|
size_t operator()(uint64_t x) const {
|
||
|
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
|
||
|
return splitmix64(x + FIXED_RANDOM);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct pair_hash {
|
||
|
template <typename T, typename U>
|
||
|
size_t operator()(const pair<T, U>& a) const {
|
||
|
auto hash1 = safe_hash()(a.first);
|
||
|
auto hash2 = safe_hash()(a.second);
|
||
|
if (hash1 != hash2) {
|
||
|
return hash1 ^ hash2;
|
||
|
}
|
||
|
return hash1;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/* build data structures */
|
||
|
#define unordered_counter(from, to) __AS_PROCEDURE(unordered_map<__as_typeof(from), size_t, safe_hash> to; for (auto&& x : from) ++to[x];)
|
||
|
#define counter(from, to, cmp) __AS_PROCEDURE(map<__as_typeof(from), size_t, cmp> to; for (auto&& x : from) ++to[x];)
|
||
|
#define pa(a) __AS_PROCEDURE(__typeof(a) pa; pa.push_back({}); for (auto&&x : a) pa.push_back(pa.back() + x);)
|
||
|
#define sa(a) __AS_PROCEDURE(__typeof(a) sa(a.size() + 1); {int n = a.size(); for (int i = n - 1; i >= 0; --i) sa[i] = sa[i + 1] + a[i];};)
|
||
|
#define adj(ch, n) __AS_PROCEDURE(vector<vector<int>> ch((n) + 1);)
|
||
|
#define edge(ch, u, v) __AS_PROCEDURE(ch[u].push_back(v), ch[v].push_back(u);)
|
||
|
#define Edge(ch, u, v) __AS_PROCEDURE(ch[u].push_back(v);)
|
||
|
template <typename T, typename Iterator> pair<size_t, map<T, size_t>> discretize(Iterator __first, Iterator __last) {
|
||
|
set<T> st(__first, __last);
|
||
|
size_t N = 0;
|
||
|
map<T, size_t> mp;
|
||
|
for (auto&& x : st) mp[x] = ++N;
|
||
|
return {N, mp};
|
||
|
}
|
||
|
template <typename T, typename Iterator> pair<size_t, unordered_map<T, size_t, safe_hash>> unordered_discretize(Iterator __first, Iterator __last) {
|
||
|
set<T> st(__first, __last);
|
||
|
size_t N = 0;
|
||
|
unordered_map<T, size_t, safe_hash> mp;
|
||
|
for (auto&& x : st) mp[x] = ++N;
|
||
|
return {N, mp};
|
||
|
}
|
||
|
|
||
|
/* io */
|
||
|
#define untie __AS_PROCEDURE(ios_base::sync_with_stdio(0), cin.tie(NULL))
|
||
|
template<typename T> void __read(T& x) { cin >> x; }
|
||
|
template<typename T, typename... U> void __read(T& x, U&... args) { cin >> x; __read(args...); }
|
||
|
#define read(type, ...) __AS_PROCEDURE(type __VA_ARGS__; __read(__VA_ARGS__);)
|
||
|
#define readvec(type, a, n) __AS_PROCEDURE(vector<type> a(n); for (int i = 0; i < (n); ++i) cin >> a[i];)
|
||
|
#define putvec(a) __AS_PROCEDURE(for (auto&& x : a) cout << x << ' '; cout << endl;)
|
||
|
#define debug(x) __AS_PROCEDURE(cerr << #x" = " << (x) << endl;)
|
||
|
#define debugvec(a) __AS_PROCEDURE(cerr << #a" = "; for (auto&& x : a) cerr << x << ' '; cerr << endl;)
|
||
|
template<typename T, typename U> ostream& operator<<(ostream& out, const pair<T, U>& p) {
|
||
|
out << "{" << p.first << ", " << p.second << "}";
|
||
|
return out;
|
||
|
}
|
||
|
template<typename Char, typename Traits, typename Tuple, std::size_t... Index>
|
||
|
void print_tuple_impl(std::basic_ostream<Char, Traits>& os, const Tuple& t, std::index_sequence<Index...>) {
|
||
|
using swallow = int[]; // guaranties left to right order
|
||
|
(void)swallow { 0, (void(os << (Index == 0 ? "" : ", ") << std::get<Index>(t)), 0)... };
|
||
|
}
|
||
|
template<typename Char, typename Traits, typename... Args>
|
||
|
decltype(auto) operator<<(std::basic_ostream<Char, Traits>& os, const std::tuple<Args...>& t) {
|
||
|
os << "{";
|
||
|
print_tuple_impl(os, t, std::index_sequence_for<Args...>{});
|
||
|
return os << "}";
|
||
|
}
|
||
|
template<typename T> ostream& operator<<(ostream& out, const vector<T>& vec) {
|
||
|
for (auto&& i : vec) out << i << ' ';
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
/* pops */
|
||
|
#define poptop(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.top(); q.pop();)
|
||
|
#define popback(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.back(); q.pop_back();)
|
||
|
#define popfront(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.front();q.pop_front();)
|
||
|
|
||
|
/* math */
|
||
|
constexpr inline int lg2(ll x) { return x == 0 ? -1 : sizeof(ll) * 8 - 1 - __builtin_clzll(x); }
|
||
|
|
||
|
void __exgcd(ll a, ll b, ll& x, ll& y) {
|
||
|
if (b == 0) {
|
||
|
x = 1, y = 0;
|
||
|
return;
|
||
|
}
|
||
|
__exgcd(b, a % b, y, x);
|
||
|
y -= a / b * x;
|
||
|
}
|
||
|
|
||
|
ll inverse(ll a, ll b) {
|
||
|
ll x, y;
|
||
|
__exgcd(a, b, x, y);
|
||
|
return mod(x, b);
|
||
|
}
|
||
|
|
||
|
/* string algorithms */
|
||
|
vector<int> calc_next(string t) { // pi function of t
|
||
|
int n = (int)t.length();
|
||
|
vector<int> pi(n);
|
||
|
for (int i = 1; i < n; i++) {
|
||
|
int j = pi[i - 1];
|
||
|
while (j > 0 && t[i] != t[j]) j = pi[j - 1];
|
||
|
if (t[i] == t[j]) j++;
|
||
|
pi[i] = j;
|
||
|
}
|
||
|
return pi;
|
||
|
}
|
||
|
vector<int> calc_z(string t) { // z function of t
|
||
|
int m = t.length();
|
||
|
vector<int> z;
|
||
|
z.push_back(m);
|
||
|
pair<int, int> prev = {1, -1};
|
||
|
for (int i = 1; i < m; ++i) {
|
||
|
if (z[i - prev.first] + i <= prev.second) {
|
||
|
z.push_back(z[i - prev.first]);
|
||
|
} else {
|
||
|
int j = max(i, prev.second + 1);
|
||
|
while (j < m && t[j] == t[j - i]) ++j;
|
||
|
z.push_back(j - i);
|
||
|
prev = {i, j - 1};
|
||
|
}
|
||
|
}
|
||
|
return z;
|
||
|
}
|
||
|
vector<int> kmp(string s, string t) { // find all t in s
|
||
|
string cur = t + '#' + s;
|
||
|
int sz1 = s.size(), sz2 = t.size();
|
||
|
vector<int> v;
|
||
|
vector<int> lps = calc_next(cur);
|
||
|
for (int i = sz2 + 1; i <= sz1 + sz2; i++) {
|
||
|
if (lps[i] == sz2) v.push_back(i - 2 * sz2);
|
||
|
}
|
||
|
return v;
|
||
|
}
|
||
|
int period(string s) { // find the length of shortest recurring period
|
||
|
int n = s.length();
|
||
|
auto z = calc_z(s);
|
||
|
for (int i = 1; i <= n / 2; ++i) {
|
||
|
if (n % i == 0 && z[i] == n - i) {
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
/////////////////////////////////////////////////////////
|
||
|
|
||
|
#define SINGLE_TEST_CASE
|
||
|
// #define DUMP_TEST_CASE 512
|
||
|
|
||
|
void dump() {}
|
||
|
|
||
|
void prep() {}
|
||
|
|
||
|
namespace Exgcd {
|
||
|
template <typename T> T abs(T x) { return x < 0 ? -x : x; }
|
||
|
|
||
|
template <typename T>
|
||
|
struct exgcd_solution_t {
|
||
|
T x, y, gcd;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct diophantine_solution_t {
|
||
|
exgcd_solution_t<T> x_min, y_min;
|
||
|
T range;
|
||
|
};
|
||
|
|
||
|
// solve `ax + by = gcd(a, b)`
|
||
|
template <typename T>
|
||
|
optional<exgcd_solution_t<T>> exgcd(T a, T b) {
|
||
|
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
||
|
T x, y, g;
|
||
|
function<void(T, T)> __exgcd = [&__exgcd, &x, &y, &g] (T a, T b) -> void {
|
||
|
if (b == 0) {
|
||
|
g = a, x = 1, y = 0;
|
||
|
} else {
|
||
|
__exgcd(b, a % b);
|
||
|
swap(x, y);
|
||
|
y -= a / b * x;
|
||
|
}
|
||
|
};
|
||
|
__exgcd(a, b);
|
||
|
return {{ x, y, g }};
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
optional<T> inverse(T a, T b) {
|
||
|
auto raw = exgcd(a, b);
|
||
|
if (raw == nullopt || raw.value().gcd != 1) {
|
||
|
return nullopt;
|
||
|
} else {
|
||
|
return mod(raw.value().x, b);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// solve { x = a_i (mod n_i) } if n_i's are coprime
|
||
|
template <typename T>
|
||
|
optional<T> crt(const vector<pair<T, T>>& equations) {
|
||
|
T prod = 1;
|
||
|
for (auto&& [a, n] : equations) {
|
||
|
prod *= n;
|
||
|
}
|
||
|
T res = 0;
|
||
|
for (auto&& [a, n] : equations) {
|
||
|
T m = prod / n;
|
||
|
auto m_rev = inverse(m, n);
|
||
|
if (m_rev == nullopt) return nullopt;
|
||
|
res = mod(res + a * mod(m * m_rev.value(), prod), prod);
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
// find minimal non-negative integral solutions of `ax + by = c`. It's not guaranteed that the other variable is non-negative.
|
||
|
template <typename T>
|
||
|
optional<diophantine_solution_t<T>> diophantine(T a, T b, T c, bool force_positive = false) {
|
||
|
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
||
|
auto raw = exgcd(a, b).value();
|
||
|
if (c % raw.gcd) {
|
||
|
return nullopt;
|
||
|
} else {
|
||
|
T x = raw.x * c / raw.gcd, y = raw.y * c / raw.gcd;
|
||
|
T kx = force_positive ? (x <= 0 ? (-x) * raw.gcd / b + 1 : 1 - (x + b / raw.gcd - 1) * raw.gcd / b) : (x <= 0 ? ((-x) + b / raw.gcd - 1) * raw.gcd / b : (- x * raw.gcd / b));
|
||
|
T ky = force_positive ? (y <= 0 ? (- 1 - (-y) * raw.gcd / a) : (y + a / raw.gcd - 1) * raw.gcd / a - 1) : (y <= 0 ? (- ((-y) + a / raw.gcd - 1) * raw.gcd / a) : y * raw.gcd / a);
|
||
|
return {{ { x + b * kx / raw.gcd , y - a * kx / raw.gcd , raw.gcd }, { x + b * ky / raw.gcd , y - a * ky / raw.gcd, raw.gcd }, abs(kx - ky) + 1 }};
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// find the minimal non-negative integral solution of `ax = b (mod n)`
|
||
|
template <typename T>
|
||
|
optional<T> congruential(T a, T b, T n) {
|
||
|
if (a == 0) {
|
||
|
if (b != 0) return nullopt;
|
||
|
return 0;
|
||
|
}
|
||
|
if (a < 0 && a != LLONG_MIN && b != LLONG_MIN) a = -a, b = -b;
|
||
|
auto sol = diophantine(a, n, b);
|
||
|
if (sol == nullopt) {
|
||
|
return nullopt;
|
||
|
} else {
|
||
|
return sol.value().x_min.x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void solve() {
|
||
|
read(ll, n, p, w, d);
|
||
|
auto sol = Exgcd::diophantine<__int128_t>(w, d, p);
|
||
|
if (sol == nullopt) {
|
||
|
cout << -1 << endl;
|
||
|
} else {
|
||
|
ll x = sol->x_min.x, y = sol->x_min.y;
|
||
|
if (x + y <= n) {
|
||
|
if (y < 0) cout << -1 << endl;
|
||
|
else cout << x << ' ' << y << ' ' << n - x - y << endl;
|
||
|
} else {
|
||
|
ll g = sol->x_min.gcd;
|
||
|
ll tm = (w - d) / g;
|
||
|
ll k = (x + y - n + tm - 1) / tm;
|
||
|
if (k * w / g > y) {
|
||
|
cout << -1 << endl;
|
||
|
} else {
|
||
|
ll new_x = x + k * d / g, new_y = y - k * w / g;
|
||
|
cout << new_x << ' ' << new_y << ' ' << n - new_x - new_y << endl;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main() {
|
||
|
untie, cout.tie(NULL);
|
||
|
prep();
|
||
|
#ifdef SINGLE_TEST_CASE
|
||
|
solve();
|
||
|
#else
|
||
|
read(int, t);
|
||
|
for (int i = 0; i < t; ++i) {
|
||
|
#ifdef DUMP_TEST_CASE
|
||
|
if (i + 1 == (DUMP_TEST_CASE)) {
|
||
|
dump();
|
||
|
} else {
|
||
|
solve();
|
||
|
}
|
||
|
#else
|
||
|
solve();
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
}
|