///////////////////////////////////////////////////////// /** * Useful Macros * by subcrip * (requires C++17) */ #include using namespace std; /* macro helpers */ #define __NARGS(...) std::tuple_size::value #define __DECOMPOSE_S(a, x) auto x = a; #define __DECOMPOSE_N(a, ...) auto [__VA_ARGS__] = a; constexpr void __() {} #define __AS_PROCEDURE(...) __(); __VA_ARGS__; __() #define __as_typeof(container) decltype(container)::value_type /* type aliases */ using ll = int64_t; using ull = uint64_t; using pii = pair; using pil = pair; using pli = pair; using pll = pair; /* constants */ constexpr int INF = 0x3f3f3f3f; constexpr ull MDL = 1e9 + 7; constexpr ull PRIME = 998'244'353; constexpr ull MDL1 = 825; constexpr ull MDL2 = 87825; /* bit-wise operations */ #define lowbit(x) ((x) & -(x)) #define popcount(x) (__builtin_popcountll(ll(x))) #define parity(x) (__builtin_parityll(ll(x))) #define msp(x) (63LL - __builtin_clzll(ll(x))) #define lsp(x) (__builtin_ctzll(ll(x))) /* fast pairs */ #define upair ull #define umake(x, y) (ull(x) << 32 | ull(y)) #define u1(p) ((p) >> 32) #define u2(p) ((p) & ((1ULL << 32) - 1)) #define ult std::less #define ugt std::greater #define ipair ull #define imake(x, y) (umake(x, y)) #define i1(p) (int(u1(p))) #define i2(p) (int(u2(p))) struct ilt { bool operator()(const ipair& a, const ipair& b) const { if (i1(a) == i1(b)) return i2(a) < i2(b); else return i1(a) < i1(b); } }; struct igt { bool operator()(const ipair& a, const ipair& b) const { if (i1(a) == i1(b)) return i2(a) > i2(b); else return i1(a) > i1(b); } }; /* conditions */ #define loop while (1) #define if_or(var, val) if (!(var == val)) var = val; else #define continue_or(var, val) __AS_PROCEDURE(if (var == val) continue; var = val;) #define break_or(var, val) __AS_PROCEDURE(if (var == val) break; var = val;) /* build data structures */ #define unordered_counter(from, to) __AS_PROCEDURE(unordered_map<__as_typeof(from), size_t> to; for (auto&& x : from) ++to[x];) #define counter(from, to, cmp) __AS_PROCEDURE(map<__as_typeof(from), size_t, cmp> to; for (auto&& x : from) ++to[x];) #define pa(a) __AS_PROCEDURE(__typeof(a) pa; pa.push_back({}); for (auto&&x : a) pa.push_back(pa.back() + x);) #define sa(a) __AS_PROCEDURE(__typeof(a) sa(a.size() + 1); {int n = a.size(); for (int i = n - 1; i >= 0; --i) sa[i] = sa[i + 1] + a[i];};) #define adj(ch, n) __AS_PROCEDURE(vector> ch((n) + 1);) #define edge(ch, u, v) __AS_PROCEDURE(ch[u].push_back(v), ch[v].push_back(u);) #define Edge(ch, u, v) __AS_PROCEDURE(ch[u].push_back(v);) /* io */ #define untie __AS_PROCEDURE(ios_base::sync_with_stdio(0), cin.tie(NULL)) template void __read(T& x) { cin >> x; } template void __read(T& x, U&... args) { cin >> x; __read(args...); } #define read(type, ...) __AS_PROCEDURE(type __VA_ARGS__; __read(__VA_ARGS__);) #define readvec(type, a, n) __AS_PROCEDURE(vector a(n); for (int i = 0; i < (n); ++i) cin >> a[i];) #define putvec(a) __AS_PROCEDURE(for (auto&& x : a) cout << x << ' '; cout << endl;) #define debug(x) __AS_PROCEDURE(cerr << #x" = " << x << endl;) #define debugvec(a) __AS_PROCEDURE(cerr << #a" = "; for (auto&& x : a) cerr << x << ' '; cerr << endl;) /* pops */ #define poptop(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.top(); q.pop();) #define popback(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.back(); q.pop_back();) #define popfront(q, ...) __AS_PROCEDURE(auto [__VA_ARGS__] = q.front();q.pop_front();) /* algorithms */ vector kmp(string s, string t) { // find all t in s int n = s.length(), m = t.length(); vector next; next.push_back(-1); int j = -1, i = 0; while (i < m) if (j == -1 || t[i] == t[j]) { ++i, ++j; if (i != m && t[i] == t[j]) next.push_back(next[j]); else next.push_back(j); } else j = next[j]; vector res; i = 0, j = 0; while (i < n && j < m) if (j == -1 || s[i] == t[j]) { ++i, ++j; if (j == m) res.push_back(i - j), j = next[j]; } else j = next[j]; return res; } ///////////////////////////////////////////////////////// void solve() { read(int, n, a, b); adj(ch, n); for (int i = 0; i < n; ++i) { read(int, u, v); edge(ch, u, v); } vector vis(n + 1); // bfs => distance from M to each vertex deque> dq; vector dis_m(n + 1, INF); dq.emplace_back(a, 0); while (dq.size()) { popfront(dq, v, d); continue_or(vis[v], 1); dis_m[v] = d; for (auto&& u : ch[v]) { dq.emplace_back(u, d + 1); } } fill(vis.begin(), vis.end(), 0); // bfs => distance from V to each vertex vector dis_v(n + 1, INF); dq.emplace_back(b, 0); while (dq.size()) { popfront(dq, v, d); continue_or(vis[v], 1); dis_v[v] = d; for (auto&& u : ch[v]) { dq.emplace_back(u, d + 1); } } // dfs => find qualified cycle fill(vis.begin(), vis.end(), 0); function dfs = [&] (int v, int pa) -> bool { if_or(vis[v], 1) { if (dis_m[v] > dis_v[v]) { } return dis_m[v] > dis_v[v]; } for (auto&& u : ch[v]) { if (u != pa && dfs(u, v)) return 1; } return 0; }; if (dfs(b, 0)) { cout << "YES\n"; } else { cout << "NO\n"; } } int main() { read(int, t); while(t--) solve(); }