Create exgcd.cc
This commit is contained in:
parent
5ec76e66e1
commit
be147b16ee
|
@ -0,0 +1,60 @@
|
|||
namespace Exgcd {
|
||||
struct exgcd_solution_t {
|
||||
ll x, y, gcd;
|
||||
};
|
||||
|
||||
struct diophantine_solution_t {
|
||||
exgcd_solution_t x_min, y_min;
|
||||
ll range;
|
||||
};
|
||||
|
||||
// solve `ax + by = gcd(a, b)`
|
||||
optional<exgcd_solution_t> exgcd(ll a, ll b) {
|
||||
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
||||
ll x, y, g;
|
||||
function<void(ll, ll)> __exgcd = [&__exgcd, &x, &y, &g] (ll a, ll b) -> void {
|
||||
if (b == 0) {
|
||||
g = a, x = 1, y = 0;
|
||||
} else {
|
||||
__exgcd(b, a % b);
|
||||
swap(x, y);
|
||||
y -= a / b * x;
|
||||
}
|
||||
};
|
||||
__exgcd(a, b);
|
||||
return {{ x, y, g }};
|
||||
};
|
||||
|
||||
optional<ll> inverse(ll a, ll b) {
|
||||
auto raw = exgcd(a, b);
|
||||
if (raw == nullopt || raw.value().gcd != 1) {
|
||||
return nullopt;
|
||||
} else {
|
||||
return mod(raw.value().x, b);
|
||||
}
|
||||
}
|
||||
|
||||
// find minimal non-negative integral solutions of `ax + by = c`
|
||||
optional<diophantine_solution_t> diophantine(ll a, ll b, ll c, bool force_positive = false) {
|
||||
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
||||
auto raw = exgcd(a, b).value();
|
||||
if (c % raw.gcd) {
|
||||
return nullopt;
|
||||
} else {
|
||||
ll x = raw.x * c / raw.gcd, y = raw.y * c / raw.gcd;
|
||||
ll kx = force_positive ? (x <= 0 ? (-x) * raw.gcd / b + 1 : 1 - (x + b / raw.gcd - 1) * raw.gcd / b) : (x <= 0 ? ((-x) + b / raw.gcd - 1) * raw.gcd / b : (- x * raw.gcd / b));
|
||||
ll ky = force_positive ? (y <= 0 ? (- 1 - (-y) * raw.gcd / a) : (y + a / raw.gcd - 1) * raw.gcd / a - 1) : (y <= 0 ? (- ((-y) + a / raw.gcd - 1) * raw.gcd / a) : y * raw.gcd / a);
|
||||
return {{ { x + b * kx / raw.gcd , y - a * kx / raw.gcd , raw.gcd }, { x + b * ky / raw.gcd , y - a * ky / raw.gcd, raw.gcd }, abs(kx - ky) + 1 }};
|
||||
}
|
||||
}
|
||||
|
||||
// find the minimal non-negative integral solution of `ax = b (mod n)`
|
||||
optional<ll> congruential(ll a, ll b, ll n) {
|
||||
auto sol = diophantine(a, n, b);
|
||||
if (sol == nullopt) {
|
||||
return nullopt;
|
||||
} else {
|
||||
return sol.value().x_min.x;
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue