namespace Exgcd { struct exgcd_solution_t { ll x, y, gcd; }; struct diophantine_solution_t { exgcd_solution_t x_min, y_min; ll range; }; // solve `ax + by = gcd(a, b)` optional exgcd(ll a, ll b) { if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt; ll x, y, g; function __exgcd = [&__exgcd, &x, &y, &g] (ll a, ll b) -> void { if (b == 0) { g = a, x = 1, y = 0; } else { __exgcd(b, a % b); swap(x, y); y -= a / b * x; } }; __exgcd(a, b); return {{ x, y, g }}; }; optional inverse(ll a, ll b) { auto raw = exgcd(a, b); if (raw == nullopt || raw.value().gcd != 1) { return nullopt; } else { return mod(raw.value().x, b); } } // find minimal non-negative integral solutions of `ax + by = c` optional diophantine(ll a, ll b, ll c, bool force_positive = false) { if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt; auto raw = exgcd(a, b).value(); if (c % raw.gcd) { return nullopt; } else { ll x = raw.x * c / raw.gcd, y = raw.y * c / raw.gcd; ll kx = force_positive ? (x <= 0 ? (-x) * raw.gcd / b + 1 : 1 - (x + b / raw.gcd - 1) * raw.gcd / b) : (x <= 0 ? ((-x) + b / raw.gcd - 1) * raw.gcd / b : (- x * raw.gcd / b)); ll ky = force_positive ? (y <= 0 ? (- 1 - (-y) * raw.gcd / a) : (y + a / raw.gcd - 1) * raw.gcd / a - 1) : (y <= 0 ? (- ((-y) + a / raw.gcd - 1) * raw.gcd / a) : y * raw.gcd / a); return {{ { x + b * kx / raw.gcd , y - a * kx / raw.gcd , raw.gcd }, { x + b * ky / raw.gcd , y - a * ky / raw.gcd, raw.gcd }, abs(kx - ky) + 1 }}; } } // find the minimal non-negative integral solution of `ax = b (mod n)` optional congruential(ll a, ll b, ll n) { if (a == 0) { if (b != 0) return nullopt; return 0; } if (a < 0 && a != LLONG_MIN && b != LLONG_MIN) a = -a, b = -b; auto sol = diophantine(a, n, b); if (sol == nullopt) { return nullopt; } else { return sol.value().x_min.x; } } }