83 lines
2.8 KiB
C++
83 lines
2.8 KiB
C++
|
|
namespace Exgcd {
|
|
struct exgcd_solution_t {
|
|
ll x, y, gcd;
|
|
};
|
|
|
|
struct diophantine_solution_t {
|
|
exgcd_solution_t x_min, y_min;
|
|
ll range;
|
|
};
|
|
|
|
// solve `ax + by = gcd(a, b)`
|
|
optional<exgcd_solution_t> exgcd(ll a, ll b) {
|
|
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
|
ll x, y, g;
|
|
function<void(ll, ll)> __exgcd = [&__exgcd, &x, &y, &g] (ll a, ll b) -> void {
|
|
if (b == 0) {
|
|
g = a, x = 1, y = 0;
|
|
} else {
|
|
__exgcd(b, a % b);
|
|
swap(x, y);
|
|
y -= a / b * x;
|
|
}
|
|
};
|
|
__exgcd(a, b);
|
|
return {{ x, y, g }};
|
|
};
|
|
|
|
optional<ll> inverse(ll a, ll b) {
|
|
auto raw = exgcd(a, b);
|
|
if (raw == nullopt || raw.value().gcd != 1) {
|
|
return nullopt;
|
|
} else {
|
|
return mod(raw.value().x, b);
|
|
}
|
|
}
|
|
|
|
// solve { x = a_i (mod n_i) } if n_i's are coprime
|
|
optional<ll> crt(const vector<pll>& equations) {
|
|
ll prod = 1;
|
|
for (auto&& [a, n] : equations) {
|
|
prod *= n;
|
|
}
|
|
ll res = 0;
|
|
for (auto&& [a, n] : equations) {
|
|
ll m = prod / n;
|
|
auto m_rev = inverse(m, n);
|
|
if (m_rev == nullopt) return nullopt;
|
|
res = mod(res + a * mod(m * m_rev.value(), prod), prod);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// find minimal non-negative integral solutions of `ax + by = c`
|
|
optional<diophantine_solution_t> diophantine(ll a, ll b, ll c, bool force_positive = false) {
|
|
if (a < 0 || b < 0 || a == 0 && b == 0) return nullopt;
|
|
auto raw = exgcd(a, b).value();
|
|
if (c % raw.gcd) {
|
|
return nullopt;
|
|
} else {
|
|
ll x = raw.x * c / raw.gcd, y = raw.y * c / raw.gcd;
|
|
ll kx = force_positive ? (x <= 0 ? (-x) * raw.gcd / b + 1 : 1 - (x + b / raw.gcd - 1) * raw.gcd / b) : (x <= 0 ? ((-x) + b / raw.gcd - 1) * raw.gcd / b : (- x * raw.gcd / b));
|
|
ll ky = force_positive ? (y <= 0 ? (- 1 - (-y) * raw.gcd / a) : (y + a / raw.gcd - 1) * raw.gcd / a - 1) : (y <= 0 ? (- ((-y) + a / raw.gcd - 1) * raw.gcd / a) : y * raw.gcd / a);
|
|
return {{ { x + b * kx / raw.gcd , y - a * kx / raw.gcd , raw.gcd }, { x + b * ky / raw.gcd , y - a * ky / raw.gcd, raw.gcd }, abs(kx - ky) + 1 }};
|
|
}
|
|
}
|
|
|
|
// find the minimal non-negative integral solution of `ax = b (mod n)`
|
|
optional<ll> congruential(ll a, ll b, ll n) {
|
|
if (a == 0) {
|
|
if (b != 0) return nullopt;
|
|
return 0;
|
|
}
|
|
if (a < 0 && a != LLONG_MIN && b != LLONG_MIN) a = -a, b = -b;
|
|
auto sol = diophantine(a, n, b);
|
|
if (sol == nullopt) {
|
|
return nullopt;
|
|
} else {
|
|
return sol.value().x_min.x;
|
|
}
|
|
}
|
|
}
|