return [[ static vector power1; static vector power2; static const ll b = rd() % INF; static const ll b1 = inverse(b, MDL1); static const ll b2 = inverse(b, MDL2); template struct hash_vec { using hash_type = pll; ll hash1; ll hash2; vector<_Tp> seq; size_t size() { return seq.size(); } void push_back(const _Tp& x) { hash1 = (hash1 * b % MDL1 + x) % MDL1; hash2 = (hash2 * b % MDL2 + x) % MDL2; seq.push_back(x); } void push_front(const _Tp& x) { size_t length = size(); hash1 = (hash1 + x * power1[length] % MDL1) % MDL1; hash2 = (hash2 + x * power2[length] % MDL2) % MDL2; seq.push_front(x); } void pop_back() { _Tp e = seq.back(); seq.pop_back(); hash1 = mod(hash1 - e, MDL1) * b1 % MDL1; hash2 = mod(hash2 - e, MDL2) * b2 % MDL2; } void pop_front() { _Tp e = seq.front(); seq.pop_front(); int length = seq.size(); hash1 = mod(hash1 - e * power1[length] % MDL1, MDL1); hash2 = mod(hash2 - e * power2[length] % MDL2, MDL2); } void set(size_t pos, const _Tp& value) { int length = seq.size(); int old_value = seq[pos]; hash1 = (hash1 + (value - old_value) * power1[length - 1 - pos] % MDL1) % MDL1; hash2 = (hash2 + (value - old_value) * power2[length - 2 - pos] % MDL2) % MDL2; seq[pos] = value; } const _Tp& operator[](size_t pos) { return seq[pos]; } hash_type hash() { return { hash1, hash2 }; } void clear() { hash1 = 0; hash2 = 0; seq.clear(); } hash_vec(size_t maxn) { clear(); ll c1 = power1.size() ? power1.back() * b % MDL1 : 1; ll c2 = power2.size() ? power2.back() * b % MDL2 : 1; for (int i = power1.size(); i < maxn; ++i) { power1.push_back(c1); power2.push_back(c2); c1 = c1 * b % MDL1; c2 = c2 * b % MDL2; } } hash_vec(size_t maxn, const _Tp& init_value) : hash_vec(maxn) { for (size_t i = 0; i != maxn; ++i) { push_back(init_value); } } }; struct range_hash { vector hp; template range_hash(const T& vec) { hp.emplace_back(); hash_vec hs(vec.size() + 1); for (auto&& x : vec) { hs.push_back(x); hp.emplace_back(hs.hash()); } } /// query hash of subarray [l, r]. Index starts from 0. inline pll range_query(size_t l, size_t r) { return { mod(hp[r + 1].first - hp[l].first * power1[r + 1 - l] % MDL1, MDL1), mod(hp[r + 1].second - hp[l].second * power2[r + 1 - l] % MDL2, MDL2), }; } }; ]]