39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
|
import simplenn
|
||
|
import MNIST
|
||
|
import numpy as np
|
||
|
from time import sleep
|
||
|
from copy import deepcopy
|
||
|
|
||
|
sigmoid = simplenn.Sigmoid()
|
||
|
cross_entropy = simplenn.CrossEntropy()
|
||
|
|
||
|
x, y = MNIST.load_data('./data/mnist_train.csv', rescale=True)
|
||
|
m, n = x.shape
|
||
|
units = np.array([25, 15, 1])
|
||
|
model = simplenn.Model(units, n, sigmoid, cross_entropy)
|
||
|
# model.evaluate(x, y)
|
||
|
# sleep(5)
|
||
|
print('\n============Train===========')
|
||
|
model.train_2(x, y, 20, 0.001, 1)
|
||
|
print('\n=====Evaluate(training)=====')
|
||
|
model.evaluate(x, y)
|
||
|
print('\n=======Evaluate(test)=======')
|
||
|
x, y = MNIST.load_data('./data/mnist_test.csv', rescale=True)
|
||
|
model.evaluate(x, y)
|
||
|
|
||
|
# x, y = MNIST.load_data('./data/mnist_train.csv', max_size=100)
|
||
|
# m, n = x.shape
|
||
|
# units = np.array([25, 15, 1])
|
||
|
# model = simplenn.Model(units, n, sigmoid, cross_entropy)
|
||
|
# model1 = deepcopy(model)
|
||
|
# model1.train_ng(x, y, 20, 0.6)
|
||
|
# model1.evaluate(x, y)
|
||
|
|
||
|
# x = np.array([[0, 0],
|
||
|
# [1, 1]])
|
||
|
# y = np.array([0, 1])
|
||
|
#
|
||
|
# units = np.array([3, 1])
|
||
|
# model = simplenn.Model(units, 2, sigmoid, cross_entropy)
|
||
|
# model.train_ng(x, y, 500, 0.6)
|
||
|
# model.evaluate(x, y)
|